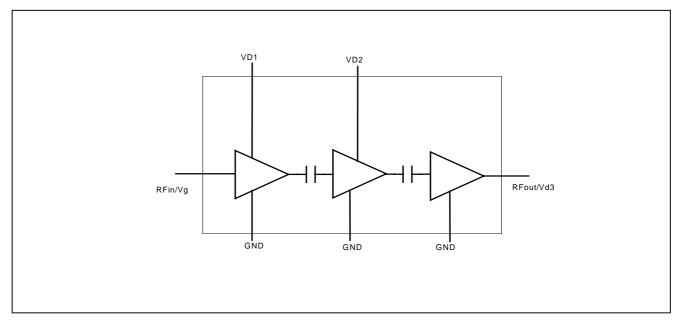

GaAs MMIC

Preliminary Data

- Broadband Power Amplifier [800..3500 Mhz]
- DECT, PHS, PCS, GSM, AMPS, WLAN, WLL
- Single Voltage Supply
- Operating voltage range: 2.0to 6 V
- Pout = 25.5dBm at Vd=2.4V
- Pout = 27.0dBm at Vd=3.0V
- Pout = 30.0dBm at Vd=5.0V
- Overall power added efficiency up to 50 %
- Easy external matching

ESD: Electrostatic discharge sensitive device, observe handling precautions!

Туре	Marking	Ordering code (taped)	Package	
CGY 196	t.b.d.	t.b.d.	SCT598	


Maximum ratings

Characteristics	Symbol	max. Value	Unit
Positive supply voltage	VD	6	V
Supply current	Ι _D	1.0	А
Maximum input power	Pinmax	20	dBm
Channel temperature	T _{Ch}	150	°C
Storage temperature	T _{stg}	-55+150	°C
Total power dissipation ($Ts \le 81 \ ^{\circ}C$)	P _{tot}	1.0	W
Ts: Temperature at soldering point			
Pulse peak power	P _{Pulse}	2.0	W

Thermal Resistance

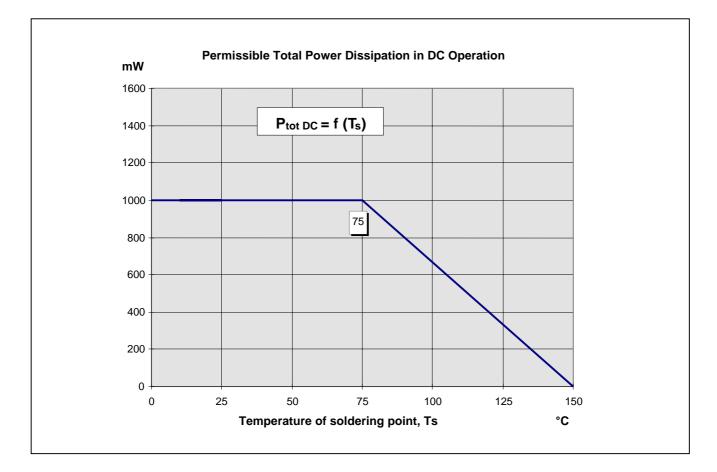
Characteristics	Symbol	max. Value	Unit
Channel-soldering point	R _{thChS}	70	K/W

Functional Block Diagram

Pin #	Name	Configuration		
1	RFin/Vg	RF input power + Gate voltage [0V internal]		
2	GND	⁻ and DC ground		
3	VD2	Pos. drain voltage of the 2nd stage		
4	n.c.	not connected		
5	n.c.	ot connected		
6	RFout/VD3	RF output power / Pos. drain voltage of the 3rd stage		
7	GND	RF and DC ground		
8	VD1	Pos. drain voltage of the 1st stage		

DC characteristics

Characteristics		Symbol	Conditions	min	typ	max	Unit
Drain current	stage 1	IDSS1	VD1=3V		45		mA
	stage 2	IDSS2	VD2=3V		65		mA
	stage 3	IDSS2	VD2=3V		340		mA
Transconductance	stage 1	gfs1	VD=3V, ID=50mA		110		mS
	stage 2	gfs2	VD=3V, ID=300mA		650		mS
	stage 3	gfs3	VD=3V, ID=300mA		650		mS


Determination of Permissible Total Power Dissipation for Continuous and Pulse Operation

The dissipated power is the power which remains in the chip and heats the device. It does not contain RF signals which are coupled out consistently.

a) Continuous Wave / DC Operation

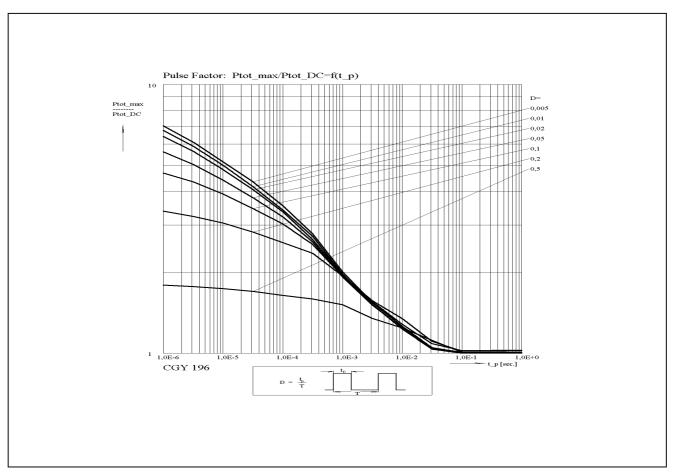
For the determination of the permissible total power dissipation P_{tot-DC} from the diagram below it is necessary to obtain the temperature of the soldering point T_S first. There are two cases:

When R_{thSA} (soldering point to ambient) is not known: Measure T_S with a temperature sensor at the leads were the heat is transferred from the device to the board (normally at the widest source or ground lead for GaAs). Use a small sensor of low heat transport, for example a thermoelement (< 1mm) with thin wires or a temperature indicating paper while the device is operating.

• When R_{thSA} is already known: $T_S = P_{diss} \times R_{thSA} + T_A$

b) Pulsed Operation

For the calculation of the permissible pulse load P_{tot-max} the following formula is applicable:


 $P_{tot-max} = P_{tot-DC} \times Pulse factor$ $= P_{tot-DC} \times (P_{tot-max} / P_{tot-DC})$

Use the values for P_{tot-DC} as derived from the above diagram and for the

pulse factor = P_{tot-max} / P_{tot-DC}

from the following diagram to get a specific value.

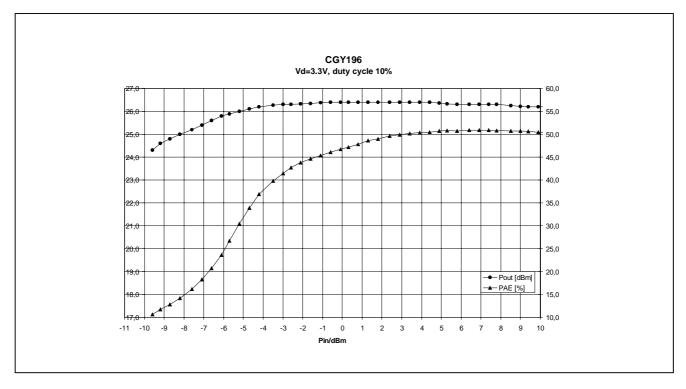
Pulse factor:

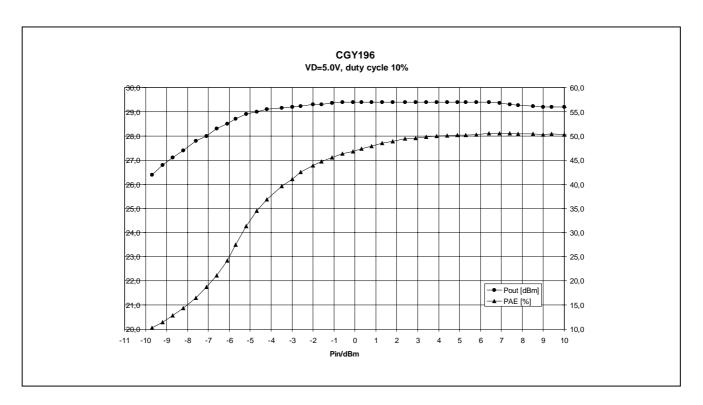
 $P_{tot\text{-max}}$ should not exceed the absolute maximum rating for the dissipated power P_{Pulse} = "Pulse peak power" = 2 W

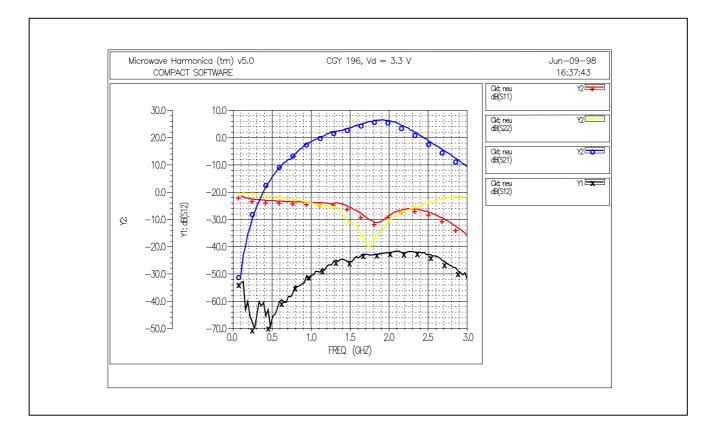
c) Reliability Considerations

This procedure yields the upper limit for the power dissipation for continuous wave (cw) and pulse applications which corresponds to the maximum allowed channel temperature. For best reliability keep the channel temperature low. The following formula allows to track the individual contributions which determine the channel temperature.

T _{ch} =	(P _{diss} x	R _{thChS}) +	Ts
Channel temperature (= junction temperature)	Power dissipated in the chip. It does not contain decoupled RF-power	Rth of device from channel to soldering point	Temperature of soldering point, measured or calculated

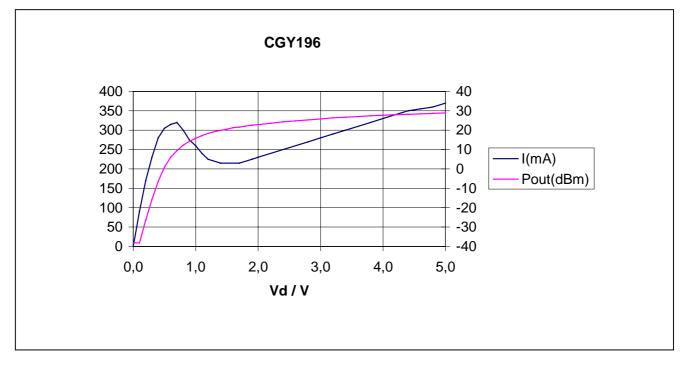

Electrical characteristics [3.0V DECT-Application: PCB-Layout see page 9] $(T_A = 25^{\circ}C, f=1.89 \text{ GHz}, Z_S=Z_L=50 \text{ Ohm}, unless otherwise specified)$

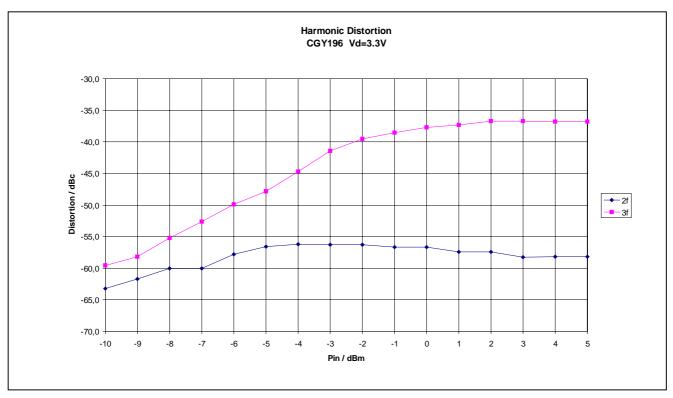

Characteristics	Symbol	min	typ	max	Unit
Supply current VD=3.0V; Pin = +0 dBm	I _{DD}	-	300	-	mA
Supply current VD=3.0V; Pin = -10 dBm	I _{DD}	-	450	-	mA
Gain VD=3.0V; P _{in} = -10 dBm	G		32		dB
Output Power VD=3.0V; P _{in} = 0 dBm	Po		26.0		dBm
Overall Power added Efficiency VD=3.0V; P _{in} = +0 dBm	PAE		45	-	%
Overall Power added Efficiency VD=3.0V; P _{in} = 3 dBm	PAE		50	-	%
Supply current VD=4.8V; Pin = -10 dBm	I _{DD}	-	450	-	mA
Supply current VD=4.8V; Pin = 0 dBm	I _{DD}	-	370	-	mA
Gain VD=4.8V; P _{in} = -10 dBm	G	-	32	-	dB
Output Power VD=4.8V; P _{in} = 0 dBm	Po		29		dBm
Overall Power added Efficiency VD=4.8V; P _{in} = 0 dBm	PAE		45	-	%
Overall Power added Efficiency VD=4.8V; P _{in} = 5 dBm	PAE		50	-	%
Off Isolation VD=0V; P _{in} = 0 dBm	-S21		40		dB
Load mismatch $Pin=0dBm$, $VD \le 3.6V$, $Z_S=50$ Ohm, Load VSWR = 20:1 for all phase,	-	No module damage for 10 sec.		•	-
Load mismatch Pin=3dBm , VD≤5.0V , Z _S =50 Ohm, Load VSWR = 20:1 for all phase,	-	No module damage for 10 sec.			-
Stability $Pin=0dBm, VD=3.6V, Z_S=50 Ohm,$ Load VSWR = 3:1 for all phase			•	below	-
Stability Pin=3dBm , VD=5.0V , Z _S =50 Ohm, Load VSWR = 3:1 for all phase,	-	All spurious output more than 70 dB below desired signal level		-	

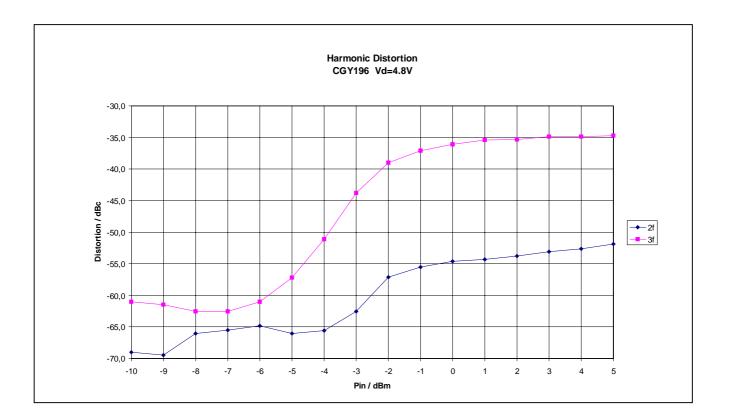

Output power and power added efficiency

pulsed mode: T=417 μ s, duty cycle 12.5%

Electrical characteristics [3.0V DECT-Application: PCB-Layout see page 9]

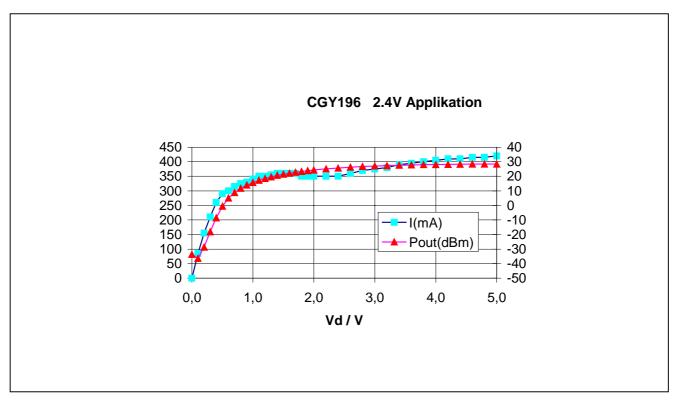





Electrical characteristics [3.0V DECT-Application: PCB-Layout see page 9] S-Parameter [pulsed mode: T=417µs, duty cycle 12.5%, Pin=0dBm,Vd=3.3V]

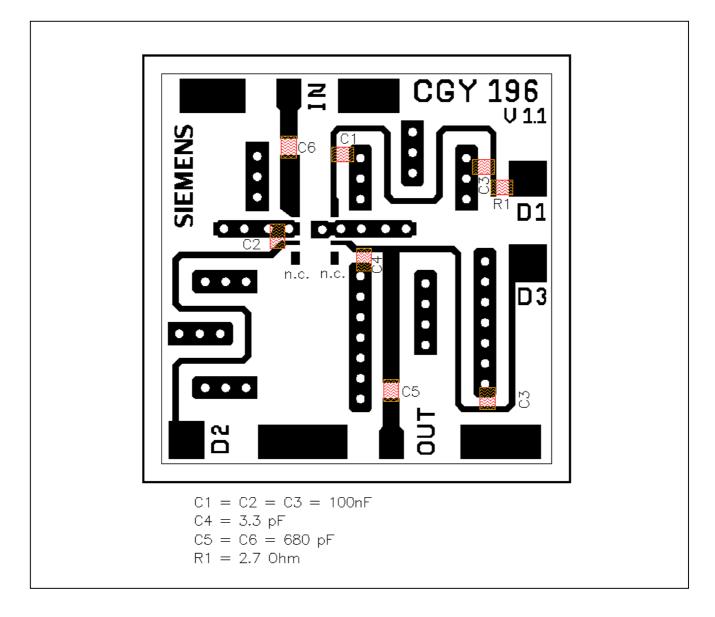
Pout,Id = f (Vd) | Pin=0dBm [pulsed mode: T=417µs, duty cycle 12.5%]

Electrical characteristics [3.0V DECT-Application: PCB-Layout see page 9]



CGY 196 V 1.1 C6 SIEMEN ^{R1}D1 ••• n.c. n.c. D3 • C C5 • 20 C1 = C2 = C3 = 100 nFC4 = 3.3 pFC5 = C6 = 680 pFR1 = 2.7 Ohm

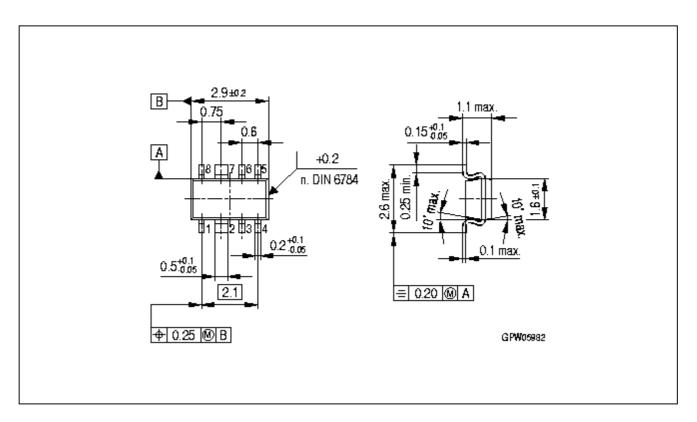
Test Board Layout [3.0V DECT-Application f=1.89GHz]


Electrical characteristics [2.4V DECT-Application: PCB-Layout see page 12] $(T_A = 25^{\circ}C, f=1.89 \text{ GHz}, Z_S=Z_L=50 \text{ Ohm}, unless otherwise specified)$

Characteristics	Symbol	min	typ	max	Unit
Supply current VD=2.4V; Pin = +0 dBm	I _{DD}	-	360	-	mA
Supply current VD=2.4V; Pin = -10 dBm	I _{DD}	-	450	-	mA
Output Power VD=2.4V; P _{in} = 0 dBm	Po		25.7		dBm
Overall Power added Efficiency $VD=2.4V; P_{in} = +0 dBm$	PAE		44	-	%
Supply current VD=2.2V; Pin = +0 dBm	I _{DD}	-	350	-	mA
Supply current VD=2.2V; Pin = -10 dBm	I _{DD}	-	450	-	mA
Output Power VD=2.2V; P _{in} = 0 dBm	Po		25.1		dBm
Overall Power added Efficiency VD=2.2V; P _{in} = +0 dBm	PAE		42	-	%
Supply current VD=3.0V; Pin = +0 dBm	I _{DD}	-	370	-	mA
Supply current VD=3.0V; Pin = -10 dBm	I _{DD}	-	450	-	mA
Output Power VD=3.0V; P _{in} = 0 dBm	Po		27.0		dBm
Overall Power added Efficiency VD=3.0V; P _{in} = +0 dBm	PAE		44	-	%
Off Isolation $VD=0V; P_{in} = 0 dBm$	-S21		34		dB
Load mismatch $Pin=0dBm$, $VD \le 3.6V$, $Z_S=50$ Ohm, Load VSWR = 20:1 for all phase,	-	No module damage for 10 sec.		-	-
Load mismatch Pin=3dBm , VD≤5.0V , Z _S =50 Ohm, Load VSWR = 20:1 for all phase,	- No module damag for 10 sec.		-	-	
Stability Pin=0dBm, VD=3.6V, Z _S =50 Ohm, Load VSWR = 3:1 for all phase	-	All spurious output more than 70 dB below desired signal level		below	-
Stability Pin=3dBm , VD=5.0V , Z _S =50 Ohm, Load VSWR = 3:1 for all phase,	-	All spurious output more than 70 dB below desired signal level		-	

Pout,Id = f (Vd) | Pin=0dBm [pulsed mode: T=417µs, duty cycle 12.5%]

Test Board Layout [2.4V DECT-Application f=1.89GHz]



SIEMENS	High Frequency Semiconductors					
Туре	Package	File	Date			
CGY196 GaAs MMIC	SCT598	D:\Projekte\AKTUELL\EH_DB\lie ferung_pdf\Lieferung\word\cgy19	26.02.1998			
Key-word						

Notes on Processing

Preliminary soldering recommendation

•	Foot Print	drawing C63060-A2123-A001-01-0027			
•	Soldering		uitable able		
	soldering profile:				
	ramp-up preheating	temperature gradient: time at 100 - 150 °C:	max. + 2 K/sec min. 90 sec.		
	ramp-up peak exposure to molten solder typ. solder temperature	temperature gradient above 183°C typ. 215-245°C	max. + 6 K/sec max. 150 sec max. 30 sec.		
	peak temperature ramp-down	max. peak 260°C temperature gradient:	max. 10 sec. min 6°C/sec		
		(see also soldering standard profile of da 'package information')			
	comments	slow ramp-up, long preh temperature recommen	heating phase and low max. Ided		
•	Solder paste thickness	150 - 200 μm			
•	Control of soldering (voids)	 visual inspection cross sectioning measurement of case temperature / thermal resistance case to ambient 			
•	Jedec A-112A	level 1 storage flo	oor life at 30°C/90% unlimited		
•	IPC-9501 (IPC-4202)		oor life at 30°C/60% unlimited ction; max. 245°C; < 6K/sec.		

Published by Siemens AG, Bereich Halbleiter, Marketing-Kommunikation, Balanstraße 73, D-81541 München.

copyright Siemens AG 1996. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and cirucits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, delivery, and prices please contact the Offices of Semiconductor Group in Germany or the Siemens Companies and Representatives worldwide (see address list).

Due to technical requirements components may contain dangerous substances. For information on the type in question please contact your nearest Siemens Office, Semiconductor Group.

Siemens AG is an approved CECC manufacturer.